9 research outputs found

    From limit cycles to strange attractors

    Full text link
    We define a quantitative notion of shear for limit cycles of flows. We prove that strange attractors and SRB measures emerge when systems exhibiting limit cycles with sufficient shear are subjected to periodic pulsatile drives. The strange attractors possess a number of precisely-defined dynamical properties that together imply chaos that is both sustained in time and physically observable.Comment: 27 page

    The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics

    Full text link
    We prove that the distributional limit of the normalised number of returns to small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical systems is compound Poisson. The returns to small balls around a fixed point in the phase space correspond to the occurrence of rare events, or exceedances of high thresholds, so that there is a connection between the laws of Return Times Statistics and Extreme Value Laws. The fact that the fixed point in the phase space is a repelling periodic point implies that there is a tendency for the exceedances to appear in clusters whose average sizes is given by the Extremal Index, which depends on the expansion of the system at the periodic point. We recall that for generic points, the exceedances, in the limit, are singular and occur at Poisson times. However, around periodic points, the picture is different: the respective point processes of exceedances converge to a compound Poisson process, so instead of single exceedances, we have entire clusters of exceedances occurring at Poisson times with a geometric distribution ruling its multiplicity. The systems to which our results apply include: general piecewise expanding maps of the interval (Rychlik maps), maps with indifferent fixed points (Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic

    Natural equilibrium states for multimodal maps

    Full text link
    This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials tlogDf-t \log|Df|, for the largest possible interval of parameters tt. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained

    On the Lebesgue measure of Li-Yorke pairs for interval maps

    Get PDF
    We investigate the prevalence of Li-Yorke pairs for C2C^2 and C3C^3 multimodal maps ff with non-flat critical points. We show that every measurable scrambled set has zero Lebesgue measure and that all strongly wandering sets have zero Lebesgue measure, as does the set of pairs of asymptotic (but not asymptotically periodic) points. If ff is topologically mixing and has no Cantor attractor, then typical (w.r.t. two-dimensional Lebesgue measure) pairs are Li-Yorke; if additionally ff admits an absolutely continuous invariant probability measure (acip), then typical pairs have a dense orbit for f×ff \times f. These results make use of so-called nice neighborhoods of the critical set of general multimodal maps, and hence uniformly expanding Markov induced maps, the existence of either is proved in this paper as well. For the setting where ff has a Cantor attractor, we present a trichotomy explaining when the set of Li-Yorke pairs and distal pairs have positive two-dimensional Lebesgue measure.Comment: 41 pages, 3 figure
    corecore